A New Inequality for Entire Functions

R. A. Zalik
Division of Mathematics, 120 Mathematics Annex Building, Auburn University, Alabama 36849-5307, L.S.A.
Communicated by E. W. Cheney

Received March 10, 1988

Abstract

We prove that, if $f(z)$ is an entire function and $|f(z)| \leqslant\left(A_{1}+A_{2}|z|^{n}\right)$ $\exp \left[a x^{2}+b y^{2}+c x+d y\right]$, then there are numbers $C_{1}, C_{2} \geqslant 0$, depending only on $n, A_{1}, A_{2}, a, b, \quad c$, and d such that $\left|f^{\prime}(z)\right| \leqslant\left(C_{1}+C_{2}|z|^{n \cdot 1}\right)$ $\exp \left(a x^{2}+b y^{2}+c x+d y\right) . \quad$ © 1989 Academic Press, Inc.

A classical theorem of S. Bernstein affirms that if $f(z)$ is an entire function of exponential type a and $|f(x)| \leqslant M$ for every real x, then $\left|f^{\prime}(x)\right| \leqslant a M$ (cf. [1]). It is of interest to try to find similar inequalities for entire functions of order larger than one. Let $z=x+i y ; x, y$ real. The purpose of this paper is to prove the following:

Theorem. Let $f(z)$ be an entire function, $n \geqslant 0$ an integer, and A_{1}, A_{2}, a, b, c, and d real numbers with $A_{1}, A_{2} \geqslant 0$ and $A_{1}+A_{2}>0$. If $|f(z)| \leqslant$ $\left(A_{1}+A_{2}|z|^{\prime \prime}\right) \exp \left[a x^{2}+b y^{2}+c x+d y\right]$ then there are numbers $C_{1}, C_{7} \geqslant 0$, depending only on n, A_{1}, A_{2}, a, b, c, and d, such that $\left|f^{\prime \prime}(z)\right| \leqslant$ $\left(C_{1}+C_{2}|z|^{n+1}\right) \exp \left(a x^{2}+b y^{2}+c x+d y\right)$.

Corollary. Let $\|f(z)\|^{*}=\sup \left\{\left(A_{1}+A_{2}|z|^{n}\right)^{-1} \exp \left(-a x^{2}-b y^{2}-\right.\right.$ $c x-d y)|f(z)|\}$, where the supremum is taken over the set of all complex numbers. If $\|f(z)\|^{*} \leqslant 1$, then there are constants D_{1} and D_{2} depending only on n, A_{1}, A_{2}, a, b, c, and d, such that $\left\|\left(D_{1}+D_{2}|z|\right)^{-1} f^{\prime}(z)\right\|^{*} \leqslant 1$.

The idea of the proof is to first find a bound for the Fourier transform $\hat{f}(z)$ of $f(z)$. Setting $q(z)=z \hat{f}(z)$ we then find a bound for $\hat{q}(z)$. The proof is completed by noticing that $f^{\prime}(z)=-i \hat{q}(-z)$. To make the proof of the theorem easier to follow we shall first prove two lemmas, of some independent interest.

Lfmma 1. Let $f(z)$ be an entire function, $n \geqslant 0$ an integer, and A, a, b, c, and d real numbers with $A, a, b>0$. If $|f(z)|<A|z|^{n} \exp \left(-a x^{2}+b y^{2}+\right.$ $c x+d y$), then $\hat{f}(z)$ is an entire function and

$$
\begin{aligned}
|\hat{f}(z)| \leqslant & A \Gamma[(n+1) / 2](2 \pi)^{-1 / 2} M\left|\frac{i x}{2 b}-\frac{y-c}{2 a}+1\right|^{n} \\
& \times \exp \left[-\frac{x^{2}}{4 b}+\frac{(y-c)^{2}}{4 a}+\frac{d x}{2 b}\right]
\end{aligned}
$$

where $M=a^{-1 / 2}$ if $a \geqslant 1$, and $M=a^{-(n+1) / 2}$ if $a<1$.
Proof. That $\hat{f}(z)$ is an entire function follows by an application of the theorems of Morera and Fubini as in, e.g., [3, p. 131]. We now use a refinement of an argument used by Gel'fand and Silov in [2, p. 239] (see also [4]). By definition, $\hat{f}(z)=(2 \pi)^{1 / 2} \int_{R} \exp (i z u) f(u) d u$. Integrating along the rectangle with vertices at $(\pm \delta, 0)$ and $(\pm \delta, v)$, applying Cauchy's theorem, and making $\delta \rightarrow+\infty$, we conclude that

$$
\hat{f}(z)=(2 \pi)^{1 / 2} \int_{R} \exp [i z(u+i v)] f(u+i v) d u
$$

Thus

$$
\begin{align*}
|\hat{f}(z)| \leqslant & A(2 \pi)^{1 / 2} \exp \left(-x v+b v^{2}+d v\right) \\
& \times \int_{R}|u+i v|^{n} \exp \left(-u y-a u^{2}+c u\right) d u \tag{1}\\
= & A(2 \pi)^{-1 ; 2} \exp \left[-x v+b v^{2}+d v+(y-c)^{2} / 4 a\right] q(z)
\end{align*}
$$

where

$$
\begin{aligned}
q(z) & =\int_{R}|u+i v|^{n} \exp \left\{-a[u+(y-c) / 2 a]^{2}\right\} d u \\
& \leqslant \sum_{k=0}^{n} C(n, k)|\dot{v}-(y-c) / 2 a|^{n}{ }^{k} I_{k}(y), \quad \text { where } \\
I_{k}(y) & =\int_{R}|u+(y-c) / 2 a|^{k} \exp \left\{-a[u+(y-c) / 2 a]^{2}\right\} d u \\
& =\int_{R}|s|^{k} \exp \left(-a s^{2}\right) d s \\
& =\Gamma[(k+1) / 2] a^{-(k+1) / 2} \leqslant \Gamma[(n+1) / 2] M .
\end{aligned}
$$

Thus, $q(z) \leqslant \Gamma[(n+1) / 2] M \sum_{k=0}^{n} C(n, k)|i v-(y-c) / 2 a|^{n-k}=$ $\Gamma[(n+1) / 2] M|i v-(y-c) / 2 a+1|^{n}$. Setting $v=x / 2 b$, the conclusion readily follows from (1).
Q.E.D.

Lemma 2. Under the hypotheses of Lemma 1 there are constants C_{1} and C_{2}, dependent only on n, A_{1}, A_{2}, a, b, c, and d, such that

$$
\left|f^{\prime}(z)\right|<\left(C_{1}+C_{2}|z|^{n+1}\right) \exp \left[-a x^{2}+b y^{2}+c x+d y\right]
$$

Proof. From Lemma 1 we readily infer that there are constants B_{1} and B_{2}, dependent only on n, A, a, b, c, and d, such that

$$
|\hat{f}(z)|<\left(B_{1}+B_{2}|z|^{n}\right) \exp \left(-\alpha x^{2}+\beta y^{2}+\gamma x+\delta y\right)
$$

where $\alpha=1 / 4 b, \beta=1 / 4 a, \gamma=d / 2 b$, and $\delta=-c / 2 a$.
Let $q(z)=z \hat{f}(z)$. Then

$$
|q(z)|<\left(B_{1}|z|+B_{2}|z|^{n+1}\right) \exp \left(-x x^{2}+\beta y^{2}+\gamma x+\delta y\right) .
$$

Applying Lemma 1 again, we readily conclude that there are constants C_{1} and C_{2}, dependent only on n, A, a, b, c, and d, such that

$$
|\hat{q}(z)|<\left(C_{1}+C_{2}|z|^{n+1}\right) \exp \left(-\alpha_{1} x^{2}+\beta_{1} y^{2}+\gamma_{1} x+\delta_{1} y\right)
$$

where $\alpha_{1}=1 / 4 \beta=a, \beta_{1}=1 / 4 \alpha=b, \gamma_{1}=\delta / 2 \beta=-c$, and $\delta_{1}=-\gamma / 2 \alpha=-d$. Hence, $|\hat{q}(z)| \leqslant\left(C_{1}+C_{2}|z|^{n+1}\right) \exp \left(-a x^{2}+b y^{2}-c x-d y\right)$. Since $f^{\prime}(z)=$ $-i \hat{q}(-z)$, the conclusion readily follows.
Q.E.D.

Proof of Theorem. Let ε be an arbitrary positive real number (say $\varepsilon=|a|+|b|+1)$, and $g(z)=\exp \left[-(a+\varepsilon) z^{2}\right] f(z)$. Then $|g(z)| \leqslant$ $\left(A_{1}+A_{2}|z|^{n}\right) \exp \left(-\varepsilon x^{2}+(a+b+\varepsilon) y^{2}+c x+d y\right)$, and therefore Lemma 2 readily implies that there are constants B_{1} and B_{2} such that

$$
\begin{aligned}
\left|g^{\prime}(z)\right| \leqslant & \left(B_{1}+B_{2}|z|^{n+1}\right) \\
& \times \exp \left(-\varepsilon x^{2}+(a+b+\varepsilon) y^{2}+c x+d y\right)
\end{aligned}
$$

Since $f(z)=\exp \left[(a+\varepsilon) z^{2}\right] g(z)$, it is clear that $f^{\prime}(z)=[2(a+\varepsilon) z g(z)+$ $\left.g^{\prime}(z)\right] \exp \left[(a+\varepsilon) z^{2}\right]$. Thus, $\quad\left|f^{\prime}(z)\right| \leqslant\left[2(a+\varepsilon)|z|\left(A_{1}+A_{2}|z|^{n}\right)+\right.$ $\left.\left(B_{1}+B_{2}|z|^{n+1}\right)\right] \exp \left(a x^{2}+b y^{2}+c x+d y\right)$, and the conclusion follows.
Q.E.D.

References

1. R. P. Boas, "Entire Functions," Academic Press, New York, 1954.
2. L. M. Gfl'fand and G. E. Silov, Fourier transforms of rapidly increasing functions and questions of the uniqueness of the solution of Cauchy's problem, Amer. Math. Soc. Transi. 5 (1957), 221-274. (Transl. of Uspekhi Mat. Nauk 3 (1953), 3-54).
3. W. Rcdin, "Real and Complex Analysis," 2nd ed., McGraw-Hill, New York, 1974.
4. R. A. Zalik, Remarks on a paper of Gel'fand and Silov on Fourier Transformas, J. Math. Anal. Appl. 102 (1984), 102 112.
